If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+7x-376=0
a = 5; b = 7; c = -376;
Δ = b2-4ac
Δ = 72-4·5·(-376)
Δ = 7569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7569}=87$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-87}{2*5}=\frac{-94}{10} =-9+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+87}{2*5}=\frac{80}{10} =8 $
| -5=w/4-8 | | 7a–6=a2+4 | | 7(y-8)=-119 | | 12a^2+12a=12 | | q/2-8=-13 | | 52=-20+-8b | | -24x-x=72-4x | | 1.5/21=x | | F(x)=2-2x | | 5w^2+13w=-15 | | -6x-3(2x+20)=60 | | 6w+6=2(w-5) | | 54=-6(-x-5) | | -5(x+1)+7x=11 | | b/5-1=4 | | 7x^2+280=0 | | -20+4g=16 | | 2(-7+3a)=-62 | | -5(2x-2)+6x=26 | | 21-3q=9 | | 25-5b=65 | | -9=-(b+7) | | −5(−2x−4)+5x−4=-29−29 | | 210+5x=255-10x | | 9-5k=12(6k+7) | | -2(-3n+5)=-10 | | P=300-5x | | 4x=3(x-5)=15 | | Q=140+2p=0 | | (b+2)(b+2)=(b-2)(b+2)-32 | | 4x=3(x-5=15 | | -6x+3(4x+10)=102 |